High-Temperature Stable Operation of Nanoribbon Field-Effect Transistors
نویسندگان
چکیده
منابع مشابه
High-Temperature Stable Operation of Nanoribbon Field-Effect Transistors
We experimentally demonstrated that nanoribbon field-effect transistors can be used for stable high-temperature applications. The on-current level of the nanoribbon FETs decreases at elevated temperatures due to the degradation of the electron mobility. We propose two methods of compensating for the variation of the current level with the temperature in the range of 25-150°C, involving the appl...
متن کاملRoom-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors.
We have fabricated suspended few-layer (1-3 layers) graphene nanoribbon field-effect transistors from unzipped multi-wall carbon nanotubes. Electrical transport measurements show that current annealing effectively removes the impurities on the suspended graphene nanoribbons, uncovering the intrinsic ambipolar transfer characteristic of graphene. Further increasing the annealing current creates ...
متن کاملA computational study of ballistic graphene nanoribbon field effect transistors
A self-consistent solution of Schrödinger equation based on Green’s function formalism coupled to a two-dimensional Poisson’s equation for treating the electrostatics of the device is used to simulate and model the ballistic performance of an armchair edged GNRFET. Our results take into account interactions of third nearest neighbors, as well as relaxation of carbon–carbon bonds in the edges of...
متن کاملTheoretical study of graphene nanoribbon field-effect transistors
Carbon nanoribbons (CNRs) have been recently experimentally and theoretically investigated for different device applications due to their unique electronic properties. In this work, we present a theoretical study of the electronic structure, e.g. bandgap and density of states, of armchair carbon nanoribbons, using both, simple analytical solutions and numerical solutions based on a πorbital tig...
متن کاملSynthesized multiwall MoS2 nanotube and nanoribbon field-effect transistors
S. Fathipour, M. Remskar, A. Varlec, A. Ajoy, R. Yan, S. Vishwanath, S. Rouvimov, W. S. Hwang, H. G. Xing, D. Jena, and A. Seabaugh Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA Solid State Physics Department, Jo!zef Stefan Institute, Ljubljana, Slovenia Department of Electrical Engineering, Cornell University, Ithaca, New York 14850, USA Departm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanoscale Research Letters
سال: 2010
ISSN: 1931-7573,1556-276X
DOI: 10.1007/s11671-010-9714-y